How good are projection methods for convex feasibility problems?
نویسنده
چکیده
We consider simple projection methods for solving convex feasibility problems. Both successive and sequential methods are considered, and heuristics to improve these are suggested. Unfortunately, particularly given the large literature which might make one think otherwise, numerical tests indicate that in general none of the variants considered are especially effective or competitive with more sophisticated alternatives.
منابع مشابه
Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems
Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems Amir Beck & Marc Teboulle To cite this article: Amir Beck & Marc Teboulle (2003) Convergence rate analysis and error bounds for projection algorithms in convex feasibility problems, Optimization Methods and Software, 18:4, 377-394, DOI: 10.1080/10556780310001604977 To link to this article: http:/...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملConvex feasibility modeling and projection methods for sparse signal recovery
A computationally-efficient method for recovering sparse signals from a series of noisy observations, known as the problem of compressed sensing (CS), is presented. The theory of CS usually leads to a constrained convex minimization problem. In this work, an alternative outlook is proposed. Instead of solving the CS problem as an optimization problem, it is suggested to transform the optimizati...
متن کاملNorm Convergence of Realistic Projection and Reflection Methods
The (2-set) convex feasibility problem asks for a point contained within the intersection of two closed convex sets of a Hilbert space. Projection and reflection methods represent a class of algorithmic schemes which are commonly used to solve this problem. Some notable projection and reflection methods include the method of alternating projections, the Douglas–Rachford method, the cyclic Dougl...
متن کاملHilbertian Convex Feasibility Problem: Convergence of Projection Methods∗
The classical problem of finding a point in the intersection of countably many closed and convex sets in a Hilbert space is considered. Extrapolated iterations of convex combinations of approximate projections onto subfamilies of sets are investigated to solve this problem. General hypotheses are made on the regularity of the sets and various strategies are considered to control the order in wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2008